Pytorch的网络可视化

概述

有时候想要绘制一个神经网络的网络结构,可以通过代码中层的定义去用第三方软件依次绘制,但是这样费时费力。因此需要一种快速绘制的办法。


Netron

netron可通过所保存的模型将其用网络的方式可视化出来,但是对于pytorch来说,其支持程度还不够,无法绘制各参数间的关系,可以将pytorch模型导出为onnx格式再使用netron来可视化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# 自建一个CNN模型并导出为onnx来可视化
import torch
import torch.nn as nn

class CNNModel(nn.Module):
def __init__(self, out_channels=10):
super(CNNModel, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=(5, 5), stride=(3, 3), padding=0),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm2d(16),
nn.MaxPool2d(2),

nn.Conv2d(16, 32, kernel_size=(5, 5), stride=(3, 3), padding=0),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm2d(32),
nn.MaxPool2d(2),

nn.Conv2d(32, 1, kernel_size=(3, 3), stride=(2, 2), padding=0)
)
self.ful_layer = nn.Sequential(
nn.Linear(36, 16),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(16),

nn.Linear(16, out_channels),
nn.Softmax(dim=1)
)

def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1)
x = self.ful_layer(x)
return x


model = CNNModel()
x = torch.rand(16, 3, 512, 512)
torch.onnx.export(model, x, "CNN.onnx")
  • 用netron打开后的模型结果:


torchviz

使用netron可以直观的显示出网络的结构,但是需要对模型进行转换,在转换的过程中也许会遇到模块的不兼容等问题,修改麻烦,使用torchviz也可以快速的生成模型结构图。要使用torchviz需要先安装Graphviz,这个工具在之前的文章中也有提及。安装后的使用方式也非常简单,依旧以简单CNN网络为例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import torch.nn as nn
import torchviz


class CNNModel(nn.Module):
def __init__(self, out_channels=10):
super(CNNModel, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 16, kernel_size=(5, 5), stride=(3, 3), padding=0),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm2d(16),
nn.MaxPool2d(2),

nn.Conv2d(16, 32, kernel_size=(5, 5), stride=(3, 3), padding=0),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm2d(32),
nn.MaxPool2d(2),

nn.Conv2d(32, 1, kernel_size=(3, 3), stride=(2, 2), padding=0)
)
self.ful_layer = nn.Sequential(
nn.Linear(36, 16),
nn.LeakyReLU(0.2, inplace=True),
nn.BatchNorm1d(16),

nn.Linear(16, out_channels),
nn.Softmax(dim=1)
)

def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1)
x = self.ful_layer(x)
return x


model = CNNModel()
x = torch.rand(16, 3, 512, 512)
out = model(x)
g = torchviz.make_dot(out)
g.render("test")

  • 最终可以生成PDF文件;

模型结构相较于netron来说更为冗杂。